Farmers, Information Networks and Information- What else is needed?

Surabhi Mittal
Framers and information networks

Traditional mode
- Television, Radio, Newspaper

Modern ICT
- Landline phone, Mobile phones, Internet / Internet Kiosks

Other farmers
- Farmers in the same village or neighbourhood

Face to Face
- KVKs, AG Univ, NGOs, Co-op, markets, Private i/p dealers etc.
Various Modern Information models

Tele centre based
- Kissan Call Centers, 2004
- BSNL Help line

Internet based
- Village Knowledge Centres, 1998
- ITC e-chaupal, 1999
- E-sagu, 2004

Mobile -SMS based
- Reuters Market Light (RML) 2007
- Warna Unwired- Microsoft, 2007
- KVK’s- NAIP, 2009
- Kisan Sanchar, 2010

Mobile- Voice message based
- IFFCO Kisan Sanchar Limited (IKSL), 2007

Mobile based application
- Fisher Friend- MSSRF, 2008
- Nokia- Life tools, 2009
- Tata- M Krishi, 2009

Video based
- Digital Green, 2009

Mobile -Voice message based
IFFCO Kisan Sanchar Limited (IKSL), 2007
Information Usability facts

Only 41% of farmers have access to modern ICT sources of information.

46% of farmers are not able to utilize the available information due to lack of extension and related facilities.

19% find inputs availability as the biggest constraint in utilizing the information.

Not much variability in access to information by farm size but huge variation in utilizing the benefits.

Age, Education, Gender and access to complementary sources of information also play an role in using information.
Is information enough? - Big Issues

Climate Information in itself enough?
- Reaching the last mile...... to create impact

Is their enough available climate information?
- I really don’t know

Climate information services
- Mostly supply driven and their is limited understanding of its usability in action
Some Examples- Good and Bad

Anuman
(Expected weather)
Location: Satara
Date: 03/12
H: 29\(^\circ\)C, L: 19\(^\circ\)C
RH: 77%
Chances of Rain: 98%
Rain: 9 mm

FARMER

SO WHAT????
What Information farmer gets?

Information Farmer Receives
- Temperature
- Market Prices
- How to grow?

Information Farmer wants
- Plant protection
- Seed information
- Weather- probability of rainfall
- cultivation best practices and crop choice

Diagram:
- Buying seeds
 - Crop planning
 - Better information on higher yield crops, seed varieties
 - Identify best time to plant
 - Source inputs e.g. fertiliser
 - Growing
 - Use better fertiliser, apply better techniques
 - Planting
 - Source inputs e.g. fertiliser
 - Know-how
 - Use better fertiliser, apply better techniques
 - Market
 - Identify best time to harvest, given weather forecasts
 - Selling
 - Find best prices, identify transport or storage problems
 - Harvesting, Packing and storing
 - Compare traders to find best market prices

Context:
- • Identify best time to plant
- • Source inputs e.g. fertiliser
The missing link

Climate information services are mostly supply driven and there is limited understanding of its usability in action.

Managing Production Risk
- Choice of seed varieties
- Timing of sowing and harvesting
- Use of climate smart technologies
- Best farm Practices
- Efficient resource Management
- Timely decision on application of inputs like fertilizers, pesticides, weedicides.
- Organizing storage

Managing Market Risk
- Inputs availability
- Type of inputs- package of it
- Availability of machinery/technology
- Market variability in prices
- Insurance
- Credit
Framework of Climate Services

- Important to convert the climate information into actionable information for farmers
- Linking the climatic information with the available technologies and best farming practices
- Customized, location and crop specific actionable info. infrastructure, investment, policy
- How are we doing this? Why should we do this?
HOW can it be done???

Extension services incorporating modern ICT tools to disseminate information

- Information
- Technologies
- Institutions
- Infrastructure, policy

Integration

Concepts of Conservation Agriculture
- Crop Rotation
- Minimum Soil Disturbance
- Crop Residue Management

- Of situations
- Decision making processes
- Impact and constraint
- Scalability

Socio Economic Understanding

Climate Smart Villages
Why? - To have Impact

Socio-Economic Impact

IMPACT inputs
Collective information on weather, farm management advisory, markets, input and output prices.

Adoption of ICT and information

Efficiency in service and relevance in content

Supporting infrastructure and right policy environment

Managing climate related risk on Yield, production, income other social benefits.

Level of information penetration

Expected impact pathway

Expected impact pathway

Why?

- To have Impact
Thank You

s.mittal@cgiar.org